87 research outputs found

    Current Management Strategies in Osgood Schlatter: A cross‐sectional mixed method study

    Get PDF
    AbstractBackground: Osgood Schlatter (OS) is the most common knee condition in adolescent athletes aged 9-16. Without evidence to guide clinical practice it is unclear how OS is managed. The aim of this study is to investigate how international healthcare professionals (General Practitioners, Physiotherapists, Rheumatologists, Sports and Exercise Medicine Doctors and Orthopaedic Surgeons) diagnose and manage OS.Methods: This mixed-method study used a convergent parallel design. A quantitative questionnaire and semi-structured interview covered prognosis, diagnosis, treatment, and return to play of adolescents with OS. For quantitative data those who reported likely/very likely considered 'for' and unlikely/very unlikely 'against' (for specific diagnostic/management strategy). Qualitative data analysis used a phenomenological approach.Results: Two hundred and fifty-one healthcare professionals completed the questionnaire. The most common diagnostic criterion was pain at the tibial tuberosity (97% for). The most common treatments were patient education (99%) and exercise therapy (92%). Other treatments options were more heterogeneous, e.g. pain medication (31% for, and 34% against). Managing training load (97%), pain intensity (87%) and psychological factors (86%) were considered the most important factors influencing the return to activities. Several themes emerged from the interviews (on N=20) including imaging, pain management, family, psychosocial factors influencing prognosis.Conclusion: Diagnosis criteria of OS was relatively well agreed upon, whereas triangulation of qualitative and quantitative data showed heterogeneity of treatments. Psychosocial factors including family were highlighted as critical in the management of OS.Keywords: Adolescents; Apophysitis; Musculoskeletal Pain; Osgood Schlatter; Osteochondrosis

    Temporal trends in incidence of time-loss injuries in four male professional North American sports over 13 seasons

    Get PDF
    Sports-related injuries increase healthcare cost burden, and in some instances have harmful long term physical and psychological implications. There is currently a lack of comprehensive data on temporal injury trends across professional North American sports. The purpose of this study was to compare temporal trends, according to incidence and time-loss injuries, by body part in professional baseball, basketball, football, and ice hockey. Public injury data from Major League Baseball, National Basketball Association, National Football League, and National Hockey League from 2007 to December 2019 were extracted and used. A mean of 62.49 injuries per 100 players per season was recorded for all professional sports. The groin/hip/thigh reported the greatest season proportional injury incidence for baseball, football, and ice hockey, with the groin/hip/thigh as the third highest injury incidence in basketball. When stratifying by more specific body part groupings, the knee demonstrated the greatest injury proportional incidence for basketball, football, and ice hockey, with the knee as the third highest proportional injury incidence for baseball. There was an increased in basketball ankle injuries following 2011-2012 season. Football and ice hockey reported the greatest concussion proportion incidence, with football demonstrating an increase in concussions over time, and a substantial increase in concussions from the 2014 to 2015 season. These publicly extracted data and findings can be used as a shared resource for professional baseball, basketball, football, and ice hockey for future individual and across sport collaborations concerning resource allocation and decision making in order to improve player health

    Return to performance following severe ankle, knee, and hip injuries in National Basketball Association players

    Get PDF
    Abstract The purpose of this study was to compare basketball performance markers one year prior to initial severe lower extremity injury, including ankle, knee, and hip injuries, to one- and two-years following injury during the regular NBA season. Publicly available data were extracted through a reproducible extraction computed programmed process. Eligible participants were NBA players with at least three seasons played between 2008 and 2019, with a time-loss injury reported during the study period. Basketball performance was evaluated for season minutes, points, and rebounds. Prevalence of return to performance and linear regressions were calculated. 285 athletes sustained a severe lower extremity injury. 196 (69%) played one year and 130 (45%) played two years following the injury. Time to return to sport was similar between groin/hip/thigh [227 (88)], knee [260 (160)], or ankle [260 (77)] (P = 0.289). 58 (30%) players participated in a similar number of games and 57 (29%) scored similar points one year following injury. 48 (37%) participated in a similar number of games and 55 (42%) scored a similar number of points two years following injury. Less than half of basketball players that suffered a severe lower extremity injury were participating at the NBA level two years following injury, with similar findings for groin/hip/thigh, knee, and ankle injuries. Less than half of players were performing at previous pre-injury levels two years following injury. Suffering a severe lower extremity injury may be a prognostic factor that can assist sports medicine professionals to educate and set performance expectations for NBA players

    Association between hip joint impingement and lumbar disc disease in elite rowers

    Get PDF
    Objectives Lumbar disc disease is a known cause of back pain. Increasingly it is thought that cam morphology of the hip may have a causal role in development of lumbar disc disease. The aim of this study was to describe the morphology of the hip and investigate the association of cam morphology with lumbar disc disease observed on MRI in elite rowers. Methods Cross-sectional observational study of 20 elite rowers (12 male, 8 female, mean age 24.45, SD 2.1). Assessment included clinical examination, questionnaires, 3T MRI scans of the hips and lumbar spine. Alpha angle of the hips and Pfirrmann score of lumbar discs were measured. Results 85% of rowers had a cam morphology in at least one hip. Alpha angle was greatest at the 1 o’clock position ((bone 70.9 (SD 16.9), cartilage 71.4 (16.3)). 95% of the group were noted to have labral tears, but only 50% of the group had history of groin pain. 85% of rowers had at least one disc with a Pfirrmann score of 3 or more and 95% had a history of back pain. A positive correlation was observed between the alpha angle and radiological degenerative disc disease (correlation coefficient=3.13, p=0.012). A negative correlation was observed between hip joint internal rotation and radiological degenerative disc disease (correlation coefficient=−2.60, p=0.018). Conclusions Rowers have a high prevalence of labral tears, cam morphology and lumbar disc disease. There is a possible association between cam morphology and radiological lumbar degenerative disc disease, however, further investigation is required

    Influence of a pH-sensitive polymer on the structure of monoolein cubosomes

    Get PDF
    Cubosomes consist in submicron size particles of lipid bicontinuous cubic phases stabilized by surfactant polymers. They provide an appealing road towards the practical use of lipid cubic phases for pharmaceutical and cosmetic applications, and efforts are currently being made to control the encapsulation and release properties of these colloidal objects. We overcome in this work the lack of sensitivity of monoolein cubosomes to pH conditions by using a pH sensitive polymer designed to strongly interact with the lipid structure at low pH. Our cryo-transmission electron microscope (cryo-TEM) and small-angle X-ray scattering (SAXS) results show that in the presence of the polymer the cubic phase structure is preserved at neutral pH, albeit with a larger cell size. At pH 5.5, in the presence of the polymer, the nanostructure of the cubosome particles is significantly altered, providing a pathway to design pH-responsive cubosomes for applications in drug delivery

    Lifetime risk and genetic predisposition to post-traumatic OA of the knee in the UK Biobank

    Get PDF
    Objective Acute knee injury is associated with post-traumatic OA (PTOA). Very little is known about the genome-wide associations of PTOA when compared with idiopathic OA (iOA). Our objective was to describe the development of knee OA after knee injury and its genetic associations in UK Biobank (UKB). Design Clinically significant structural knee injuries in those <=50 years were identified from electronic health record and self-reported data in 502,409 UKB participants. Time-to-first knee OA code was compared in injured cases and age-/sex-matched non-injured controls using Cox Proportional Hazards models. A time-to-OA genome-wide association study (GWAS) sought evidence for PTOA risk variants 6 months-20 years following injury. Evidence for associations of two iOA polygenic risk scores (PRS) was sought. Results Of 4233 knee injury cases, 1896 (44.8%) were female (mean age at injury 34.1 years [SD10.4]). Over a median of 30.2 (IQR19.5-45.4) years, 1096 (25.9%) of injured cases developed knee OA. The overall hazards ratio (HR) for knee OA after injury was 1.81[1.70,1.93],P=8.9x10-74. Female sex and increasing age at injury were associated with knee OA following injury (HR1.15[1.02,1.30];1.07[1,07,1.07] respectively). OA risk was highest in the first 5 years after injury (HR3.26[2.67,3.98]), persisting for 40 years. In 3074 knee injury cases included in the time-to-OA GWAS, no variants reached genome-wide significance. iOA PRS was not associated with time-to-OA (HR 0.43[0.02,8.41]). Conclusions Increasing age at injury and female sex appear to be associated with future development of PTOA in UKB, the risk of which was greatest in the 5 years after injury. Further international efforts towards a better-powered meta-analysis will definitively elucidate genetic similarities and differences of PTOA and iOA

    Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP)

    Get PDF
    Fire emissions are a critical component of carbon and nutrient cycles and strongly affect climate and air quality. Dynamic global vegetation models (DGVMs) with interactive fire modeling provide important estimates for long-term and large-scale changes in fire emissions. Here we present the first multi-model estimates of global gridded historical fire emissions for 1700–2012, including carbon and 33 species of trace gases and aerosols. The dataset is based on simulations of nine DGVMs with different state-of-the-art global fire models that participated in the Fire Modeling Intercomparison Project (FireMIP), using the same and standardized protocols and forcing data, and the most up-to-date fire emission factor table based on field and laboratory studies in various land cover types. We evaluate the simulations of present-day fire emissions by comparing them with satellite-based products. The evaluation results show that most DGVMs simulate present-day global fire emission totals within the range of satellite-based products. They can capture the high emissions over the tropical savannas and low emissions over the arid and sparsely vegetated regions, and the main features of seasonality. However, most models fail to simulate the interannual variability, partly due to a lack of modeling peat fires and tropical deforestation fires. Before the 1850s, all models show only a weak trend in global fire emissions, which is consistent with the multi-source merged historical reconstructions used as input data for CMIP6. On the other hand, the trends are quite different among DGVMs for the 20th century, with some models showing an increase and others a decrease in fire emissions, mainly as a result of the discrepancy in their simulated responses to human population density change and land use and land cover change (LULCC). Our study provides an important dataset for further development of regional and global multi-source merged historical reconstructions, analyses of the historical changes in fire emissions and their uncertainties, and quantification of the role of fire emissions in the Earth system. It also highlights the importance of accurately modeling the responses of fire emissions to LULCC and population density change in reducing uncertainties in historical reconstructions of fire emissions and providing more reliable future projections

    Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.

    Get PDF
    Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio

    Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    Get PDF
    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.United States. Dept. of Energy. Atmospheric System Research Program (Contract DE-AC06-76RLO 1830)United States. National Oceanic and Atmospheric AdministrationUnited States. National Aeronautics and Space Administration. HQ Science Mission Directorate Radiation Sciences ProgramUnited States. National Aeronautics and Space Administration. CALIPSO ProgramUnited States. Dept. of Energy. Atmospheric Radiation Measurement Program (Interagency Agreement No. DE-AI02-05ER63985
    corecore